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1. Introduction

The S-duality conjecture [1] for the N = 4 supersymmetric four-dimensional Yang-Mills

theories is the statement that the theory with gauge group G and a value of the complex

parameter τ = θ
2π

+ i
g2

YM

, where θ is the theta angle and gYM is the coupling constant, is

equivalent to the theories arising from the transformations S and T :

S : (G, τ) → (G∨,−1/rτ)

T : (G, τ) → (G, τ + 1) , (1.1)

where G∨ denotes the dual group of G [2] and r is the square of the ratio of the long and

short roots of the Lie algebra of G (see e.g. [3] for a recent discussion). For the simple groups

with simply-laced Lie algebras, G∨ and G are equal at the Lie algebra level. However, this

is not true for all groups. For instance, for G = Sp(2n) the dual is G∨ = SO(2n+1).

In this note we study the so called N = 1∗ gauge theories, obtained by adding a

mass deformation to the corresponding N = 4 Yang-Mills theories. It is believed that S-

duality (1.1) is inherited from the N = 4 models and therefore also realised in the N = 1∗

theories.

The quantum vacuum structure of the SU(n) N = 1∗ theory was elucidated in [4]

(see [5] for earlier work on the vacuum structure). In [4] it was shown that the quantum

vacua are controlled by a superpotential which coincides with the potential of the (complex-

ified) elliptic Calogero-Moser model. The stationary points of this potential are known,

which, in particular, makes it possible to explicitly describe the action of the SL(2, Z)

S-duality group on the (massive) vacua.

For the N = 1∗ theories based on the other simple groups there exist conjectured

superpotentials [6] which should give the quantum vacuum structure. Also for the other

groups the superpotentials are given by potentials of (twisted) elliptic Calogero-Moser

models. Unfortunately, the stationary points of these models are not known, and therefore

the same analysis as for SU(n) can not be done. One possible way out of this impasse

would be to numerically look for stationary points that lie on some lattice (as presumably

would be required for S-duality to work). However, unless exact expressions can be found,

– 1 –



J
H
E
P
0
6
(
2
0
0
7
)
0
7
7

such an approach, even if it works, would at best be a method that could be applied for

groups with low ranks.

Rather than to look for exact expressions for the stationary points of the conjectured

superpotentials of [6], in this note we have a more modest goal. Since the N = 1∗ theories

with gauge groups Sp(2n) and SO(2n+1) are related by the S transformation of the S-

duality group they should, in particular, have the same number of quantum vacua (as the

number of vacua is independent of the coupling constant). The purpose of this note is to

check whether the number of vacua agrees for the Sp(2n) and SO(2n+1) N = 1∗ theories.

Let us also mention that in a recent paper [7] S-duality was investigated for another

variant of the N = 4 theories, namely the N = 4 Yang-Mills theories on the space R×T 3.

It should be possible to combine the results here and in [7], i.e. to study the N = 1∗

theories on R×T 3. However, the two setups are in a sense orthogonal and combining them

does not seem to lead to a richer structure.

In the next section we review the (quantum) vacuum structure of the Sp(2n) and

SO(2n+1) theories, and then in section 3 we determine the number of quantum vacua in

the two theories and check that they are equal, as required by S-duality.

2. Vacuum structure of the N = 1∗ gauge theories

In this section, we review the vacuum structure of the mass-deformed N = 4 Yang-MIlls

theories known as the N = 1∗ theories [5], focusing on the gauge groups SO(n) and Sp(2n).

The superpotential of the N = 4 model, written in terms of N = 1 superfields, is

W =
2
√

2

6g2
YM

ǫijktr(φi[φj , φk]) , (2.1)

where φi (i = 1, 2, 3) are chiral superfields transforming in the adjoint representation of

the gauge group. For SO(n), the n × n matrices φi must satisfy

(φi)T = −φi , (2.2)

appropriate to the generators of the adjoint representation of so(n). For Sp(2n), the 2n×2n

matrices φi must satisfy

J(φi)T J = φi , (2.3)

which defines the generators of the adjoint representation of sp(2n). The real matrix J is

the symplectic unit of Sp(2n), satisfying JT = −J and J2 = −1l2n.

To obtain the N = 1∗ theory one adds to the superpotential (2.1) the mass deformation

Wmass =

√
2

g2
YM

3
∑

i=1

mitr(φ
i)2 , (2.4)

which, when all the masses are non-zero, breaks the supersymmetry down to N = 1. In

what follows, we rescale the φi to make the masses equal to one. (This rescaling does not
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affect the vacuum structure.) The classical supersymmetric vacuum states are obtained by

solving the F- and D-term equations, which are

[φi, φj ] = −ǫijkφk , (2.5)

and
3

∑

i=1

[φi, (φi)†] = 0 , (2.6)

respectively. Equation (2.5) together with (2.6) imply that the φi are anti-hermitian [8].

Furthermore, (2.5) imply that the φi form a (in general reducible) representation of the

su(2) Lie algebra. It is always possible to choose a block-diagonal basis,

φi =







T i
n1

. . .

T i
nl






, (2.7)

in which T i
nk

are the generators of the nk-dimensional irreducible representation of su(2).

For SO(n) (Sp(2n))
∑l

k=1 nk equals n (2n). For the gauge group SU(n) the above argument

gives the complete solution, but for SO(n) and Sp(2n) the conditions on the φi’s, (2.2)

and (2.3), lead to restrictions on the allowed dimensions of the su(2) irreps. (Note that

when choosing the block-diagonal form (2.7) for the φi, the form of the conditions (2.2)

and (2.3) in general change). The restrictions were worked out in [9] and are summarised

in the following table:

Gauge group Allowed su(2) representations gauge enhancement

Sp(2n) 2m odd-dimensional irreps sp(2m)

m even-dimensional irreps so(m)

SO(n) 2m even-dimensional irreps sp(2m)

m odd-dimensional irreps so(m)

The building blocks given in this table can be used to construct the complete solution

to the classical vacuum problem. In general, the vacuum breaks the gauge symmetry down

to a subgroup. The form of this group was also derived in [9] and is summarised in the

above table.

Before we continue, let us comment on an at first sight puzzling aspect of the above

result. Dynkin has classified the number of ways an su(2) subalgebra can be embedded

into a simple Lie algebra [10]. This classification seemingly differs from the above result.

For instance, for Sp(4) we find four vacua, namely (in terms of the dimensions of the su(2)

representations) 4, 2 + 2, 2 + 1 + 1 and 1 + 1 + 1 + 1, whereas the result in [10] gives five

solutions to the general su(2) embedding problem. Our understanding of this discrepancy

is that the result in [10] is a representation independent statement and that in certain

representations (as is the case here and in [9]) some of the solutions may be isomorphic

but in general this does not occur. For instance, for Sp(4), one can explicitly check that
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out of the five possibilities appearing in the table in [10], in our setup two are actually

isomorphic, i.e. can be transformed into each other [11].

Above we reviewed the classification of the classical vacua. Near each classical vacuum

the theory is described by an N = 1 supersymmetric Yang-Mills theory with gauge group

h, where h is the unbroken gauge symmetry in that vacua. It is well known that the

number of quantum vacua in such a theory is given by g∨h , the dual Coxeter number of h.

(Recall that g∨h is m+1 for sp(2m) and m−2 for so(m) (m > 4).) Combining this result

with the above classical analysis we obtain an algorithm which can be used to determine

the number of quantum vacua.

3. S-duality for the Sp(2n) and SO(2n+1) N = 1∗ theories

In the previous section we discussed the (quantum) vacuum structure of the Sp(2n) and

SO(2n+1) N = 1∗ theories. As an example we list the result for SO(7):

su(2) irreps unbroken symmetry number of quantum vacua

7 ∅ 1

5 + 1 + 1 so(2) massless (1)

3 + 3 + 1 so(2) massless (1)

3 + 2 + 2 sp(2) 2

3 + 1 + 1 + 1 + 1 so(4) 3

2 + 2 + 1 + 1 + 1 sp(2) ⊕ so(3) 4

1 + 1 + 1 + 1 + 1 + 1 + 1 so(7) 5

(3.1)

Here the first column gives the su(2) representations, and the second column gives the

unbroken gauge symmetry at the classical level. Finally, the third column gives the number

of vacua in the quantum theory. The entries marked ‘massless’ refer to the vacua that

classically have abelian factors in the gauge group. These vacua have massless modes also

in the quantum theory. As another example, we find for Sp(6):

su(2) irreps unbroken symmetry number of quantum vacua

6 ∅ 1

4 + 2 ∅ 1

4 + 1 + 1 sp(2) 2

3 + 3 sp(2) 2

2 + 2 + 2 so(2) 2

2 + 2 + 1 + 1 so(2) ⊕ sp(2) massless (2)

2 + 1 + 1 + 1 + 1 sp(4) 3

1 + 1 + 1 + 1 + 1 + 1 sp(6) 4

(3.2)

From the above tables, we see that the number of (massive) quantum vacua is 15 in both

cases, which constitutes a check of S-duality as explained earlier. A few comments are in

order. If the unbroken gauge group at the classical level is given by a product of simple

groups then the total number of quantum vacua is given by the product of the dual Coxeter

– 4 –



J
H
E
P
0
6
(
2
0
0
7
)
0
7
7

numbers for each factor. However, there is one subtle point in the above analysis: since

so(4) ∼= su(2) ⊕ su(2) one would expect four vacuum states in the so(4) entry in (3.1).

However, we saw above that only three were required in order for S-duality to work. The

explanation is presumably that the gauge group is not SO(4) ∼= [SU(2) ⊗ SU(2)]/Z2 but

really O(4). The extra discrete gauge symmetry projects out one of the four states leaving

three (see e.g. [12, p. 32] for a similar discussion in a different context).

The entries marked massless in the above tables have massless modes (abelian u(1)’s).

One can also contemplate counting such vacua in the following sense (a similar idea was put

forth in [7]). If the classical gauge symmetry is of the form u(1)l ⊕s where s is semi-simple,

then the number of quantum vacua for the “transverse” part controlled by s, leads to a

number of ‘continua’ of dimension l, i.e. there is a discrete number of vacua with an u(1)l

symmetry. From the above tables, we see that also this generalised counting works for the

two theories.

We could in principle continue the above reasoning to higher ranks. However, it is

clear that this method quickly becomes very cumbersome.

To make progress we will instead use a technique common in the theory of partitions.

We are actually not interested in the precise number of vacua in the two theories, we only

want to know if their numbers agree. The strategy is to write a generating function for

the number of vacua in the two theories and then compare these functions. (A similar

technique was employed in [7].)

From the block-diagonal nature of the φi (2.7) it follows that we can construct the

generating function in steps. Starting with the Sp(2n) theory we first focus on the odd-

dimensional irreps. The contribution to the generating function from 2m (2k−1)-dimensional

blocks is (m+1)q2m(2k−1), where q is a (formal) variable and m+1 arises from the dual Cox-

eter number of sp(2m) and 2m(2k−1) is the dimension of the 2m blocks. It is clear that

we should sum over m (m is fixed in any given vacuum, but can take any value) and take

the product over k (all k are allowed, but each can appear at most once). This reasoning

leads to:
∞
∏

k=1

∞
∑

m=0

(m+1) q2m(2k−1) =

∞
∏

k=1

1

(1 − q4k−2)2
. (3.3)

For the even-dimensional irreps the situation is slightly more involved. For m 2k dimen-

sional representations with m > 4 we get a contribution (m − 2)q2mk. However, for lower

ranks the number of vacua is not equal to (m − 2). For m = 4 we get 3q8k (cf. discussion

above), for m = 3 we get 2q6k (since so(3) ∼= su(2)) and for m = 1 (completely broken

gauge symmetry) we get q2k. When m = 2 we get an abelian factor so(2) ∼= u(1). To count

also the number of vacua with l abelian factors we introduce a new variable y which counts

the number of u(1)’s. For m = 2 we then get a contribution yq4k. Collecting these results,

we find

1 + q2k + yq4k + 2q6k + 3q8k +

∞
∑

m=5

(m − 2)q2mk

=
(1 − q2k − (1 − y)q4k + (3 − 2y)q6k − (1 − y)q8k − q10k + q12k)

(1 − q2k)2
. (3.4)
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Combining the above two expressions we arrive at the result that the coefficient in front of

q2n in the power series expansion of

∞
∏

k=1

(1 − q2k − (1 − y)q4k + (3 − 2y)q6k − (1 − y)q8k − q10k + q12k)

(1 − q2k)2(1 − q4k−2)2
, (3.5)

gives the number of (massive) quantum vacua in the Sp(2n) theory, and the coefficient in

front of ylq2n gives the number of vacua with an u(1)l symmetry. For instance, one can

check that the coefficient in front of q6 is 15 and the coefficient on front of yq6 is two, in

agreement with the above counting (3.2). The number of quantum vacua in the SO(n)

theories can be deduced from (3.5) by simply replacing q2k ↔ q2k−1 in this expression (this

follows from the results given in the table in section 2). To obtain the generating function

for only the SO(2n + 1) theories we need to remove the even part of the function by hand.

If S-duality is to hold, the resulting expression should then agree with (3.5) multiplied by

an additional q. Explicitly this requires:

q
∞
∏

k=1

(1 − q2k − (1 − y)q4k + (3 − 2y)q6k − (1 − y)q8k − q10k + q12k)

(1 − q2k)2(1 − q4k−2)2
?
= (3.6)

1

2

∞
∏

k=1

(1 − q2k−1 − (1−y)q4k−2 + (3−2y)q6k−3 − (1−y)q8k−4 − q10k−5 + q12k−6)

(1 − q2k−1)2(1 − q4k)2
−

1

2

∞
∏

k=1

(1 + q2k−1 − (1−y)q4k−2 − (3−2y)q6k−3 − (1−y)q8k−4 + q10k−5 + q12k−6)

(1 + q2k−1)2(1 − q4k)2
.

To analyze this rather complicated looking expression we first we note that the polynomial

P (x) = 1 − x − (1 − y)x2 + (3 − 2y)x3 − (1 − y)x4 − x5 + x6 , (3.7)

is a central constituent of the above expression and satisfies x6P (1/x) = P (x). Thus, if

x = α is a root of P (x) then so is x = 1/α. This means that P (x) =
∏3

i=1(x+αi)(x+1/αi)

which can be written as

P (x) = 1 +

(

σ1 +
σ2

σ3

)

x +

(

σ1

σ3
+

σ1σ2

σ3
+ σ2

)

x2 +

(

1

σ3
+ σ3 +

σ2
1

σ3
+

σ2
2

σ3

)

x3 + . . . (3.8)

where σ1 = α1 +α2 +α3 and σ2 = α1α2 +α2α3 +α3α1 and σ3 = α1α2α3. By identification

of (3.7) with (3.8) we find in particular that

0 = 2

(

σ1

σ3
+

σ1σ2

σ3
+σ2

)

+

(

1

σ3
+σ3 +

σ2
1

σ3
+

σ2
2

σ3

)

− 1 − 2

(

σ1+
σ2

σ3
+1

)

−
(

σ1+
σ2

σ3

)2

+ 1

= (σ3 − 1)
(σ2

3 − 2σ1σ3 + 2σ2σ3 − σ2
1σ3 − σ3 + σ2

2)

σ2
3

. (3.9)

This result means that we can choose the αi in such a way that σ3 = 1, i.e. α3 = 1
α1α2

.1

After making this choice we have y = σ1σ2, and σ1 + σ2 = −1 i.e.

α1 + α2 +
1

α1α2
+

1

α1
+

1

α2
+ α1α2 = −1 . (3.10)

1The three solutions to σ2

3 − 2σ1σ3 + 2σ2σ3 − σ2

1σ3 − σ3 + σ2

2 = 0 in (3.9) are α1 = α2α3 et cycl and

therefore lead to the same result, since both αi and 1/αi are roots of P (x).
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Let us now consider the following identity

(−c,−ac,−bc,−abc,−q2/c,−q2/ac,−q2/bc,−q2/abc; q2)∞

− (c, ac, bc, abc, q2/c, q2/ac, q2/bc, q2/abc; q2)∞ (3.11)

= 2c(−a,−b,−abc2,−q2/a,−q2/b,−q2/abc2,−q2,−q2; q2)∞

where (a1, . . . , ai; q
2)∞ = (a1; q

2)∞ · · · (ai; q
2)∞ and (a; q2)∞ =

∏∞
k=0(1 − aq2k). This

identity was first written down by Ramanujan in his notebooks in a slightly different

form [13, p. 47, Corollary] (the equivalence between the two expressions was shown in [14]).

In the form we have written it here it was recently rediscovered by Warnaar [15], who also

supplied three different proofs.

If we set c = q, a = α1 and b = α2 in (3.11) and use Euler’s famous iden-

tity (−q2; q2)∞ = (q2; q4)−1
∞ together with (±q; q2)∞ = (q2; q2)∞(q4; q4)−1

∞ (∓q; q2)−1
∞ and

(βq2; q2)∞ = (1 − β)−1(β; q2)∞ we find

∞
∏

k=0

(α1+q2k+1)(α2+q2k+1)(α1α2+q2k+1)( 1
α2

+q2k+1)( 1
α2

+q2k+1)( 1
α1α2

+q2k+1)

(1 − q2k+1)2(1 − q4k+2)2

−
∞
∏

k=0

(α1−q2k+1)(α2−q2k+1)(α1α2−q2k+1)( 1
α2
−q2k+1)( 1

α2
−q2k+1)( 1

α1α2
−q2k+1)

(1 + q2k+1)2(1 − q4k+2)2

= (1 + α1α2)
−1

(

1 +
1

α1

)−1(

1 +
1

α2

)−1

× (3.12)

2q
∞
∏

k=0

(α1 + q2k)(α2 + q2k)(α1α2 + q2k)( 1
α2

+ q2k)( 1
α2

+ q2k)( 1
α1α2

+ q2k)

(1 − q2k)2(1 − q4k)2
.

But,

(1 + α1α2)

(

1 +
1

α1

)(

1 +
1

α2

)

= 2 + α1 + α2 + α1α2 +
1

α1
+

1

α2
+

1

α1α2
= 1 , (3.13)

using (3.10). After this observation, together with letting k → k − 1 in the first two

products, we find precise agreement with (3.6). This concludes the proof that the number

of quantum vacua in the N = 1∗ theories with gauge groups Sp(2n) and SO(2n+1) agree,

and provides non-trivial support for S-duality.
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